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Abstract. Froth is d random panition OF a Ddimensional space by cells. This assembly of 
cells obeys two fundamental laws: Euler’s relation and the condition of maximum vertex figure, 
imposed by geometry and by topological stability, respectively. These two conditions generate 
a set of relations between the variables that fully characterize the system topologically. The 
number of degrees of freedom of the system and a set of useful independent variables, the ‘even 
valences’, have been found. The influence OF the space dimension and curvature on the range 
of variability of these valences is discussed and, up to D = 5,  the regions in valence space 
corresponding to ditkently curved froths ax calculated explicitly. 

1. Introduction 

A froth is a random division of space by cells. Consider a froth in D-dimensional space: 
a cell of the D-froth is a bounded volume, a D-dimensional polytope (polyhedra in three 
dimensions, polygon in two dimensions and segment in one dimension). The boundary of 
each D-cell is itself a ( D  - I)-froth constituted by ( D  - I)-polytopes. (A three-dimensional 
froth is made of 3D polyhedra. Their surface is a 2D elliptic froth whose ‘cells’ are the 
interfaces between the original cells.) Cells are convex topological D-dimensional polytopes 
separated by ‘interfaces’ which are themselves (D - 1)-dimensional polytopes, etc. 

The D-dimensional froth is therefore a graded topological random set: it contains CD 
D-polytopes, the cells, which fill space which can be Euclidean. elliptic or hyperbolic. Each 
cell is itself an elliptic ( D  - I)-froth, whose convex ‘cells’ are ( D  - 1)-polytopes which are 
the interfaces bounding the original cell and separating it from its topological neighbours. 
Each ‘interface’ of the ( D  - 1)-froth is an elliptic ( D  - 2)-froth of ( D  - Z)-polytopes, 
which are the common edges of the interfaces separating the cells from their neighbours. 
The graded topological set terminates with the edges, segments or convex 1-polytopes, 
trivially bounded by two vertices or.0-polytopes. All homology groups are trivial. All 
cycles are bounding, faces are disconnected by cutting a closed contour of edges, etc. 

Thus, the D-froth is constituted of CD cells, CD-I ‘interfaces’, . . . , Cz facets, CI edges 
and CO vertices, and each element is itself an elliptic froth in its own dimension. The 
elements are related through Euler relations, which are, for elliptic froths [l]: 
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An Euler relation is satisfied for each froth of the graded topological set. The whole 
froth can fill a Euclidean space, in which case the right-hand side of Euler’s relation equals 
1 (one D-cell in the elliptic D-froth corresponds to the cell at infinity in the Euclidean D- 
froth, and is not counted). In even D. if the original D-froth is hyperbolic, the right-hand 
side of Euler’s relation (the Euler-Poincar6 characteristic) is even and negative or zero. The 
numbers Ci of different elements of the froth are connected by valences ni,j 

Let i < j: nj,i is an incidence number, counting the numbers of j-simplices incident 
on each, lower i-simplex; ni.j is a coordination, denoting the number of lower i-simplices 
bounding each j-simplex. For example, ni.1 is the number of facets incident on an edge 
and n1 ,2  is the number o f  edges per facet. In a hexagonal lattice, n2., = 2 and n1,2 = 6 
(any edge separates two facets, any face has six edges). 

In random froths, all incidence numbers are fixed by randomness. In a random froth, 
the randomness fixes all the incidence numbers at its lowest possible value. This is a 
consequence of the topological stability: any configuration with higher incidence number 
can be split, by infinitesimal transformations, in a certain number of configurations with 
minimum incidence number (for example, in D = 2 a four-corner vertex can be split into 
two three-corner vertex through an infinitesimal deformation). The incidence numbers in 
froths are 

there are ( D  + 1) edges and (Dll) faces incident on each vertex, D faces incident on each 
edge, etc. These identities are due to randomness or topological stability (the four-corner 
boundary between Utah, Colorado, New Mexico and Arizona is not topologically stable: 
it can be split into two stable three-comer boundaries by an infinitesimal deformation). 
Stability is also dynamical, as befits an energy carried by interfaces (surface tension) 
[2]. Interface tension is also what makes the various polytopes convex and their faces 
as flat as possible. In this respect a froth consisting of convex cells is more restricted 
than a scaffolding. A diamond lattice scaffolding has cells which are not convex and 
interfaces which are not planar. The froth formed by dipping the diamond scaffolding into 
a soap solution will be very different. Similarly, the scaffolding of Schwarz’s gyroid (a 
3D scaffolding with incidence nZ.1 = 3 [3]) does not define convex cells and has twisted 
interfaces. Another way of stating convexity is that two hedgehogs of edges incident on 
any two neighbouring vertices are as eclipsed as possible. In particular, n g . ( ~ - l )  = 2 (an 
interface separate two cells in the froth). By convention, ni,i = 1 is also an incidence 
number. 

By contrast, the coordination numbers ni.j for i < j are random variables in the froth, 
except for no.] (every edge is bounded by two vertices). Their averages are severely 
restricted by relationships imposed by space-filling ( ( n l , ~ )  = (no.2) = 6 for a two- 
dimensional Euclidean froth is the consequence of Euler relation. Furthermore the shape 
of nearest neighbours’ cells are correlated in maximally random froths-a consequence of 
maximum entropy inference-through the Aboav-Weaire [4,5] and Peshkin [6] laws [2,7]. 
Similar correlations caused by maximum randomness should also occur in froths of higher, 
even dimensions, but they will not be discussed here). 

The main problem discussed in this paper is the organization of the D-dimensional 
froth. How many average coordinations (ni.j) are independent random variables and how 
many are related further by the condition of filling a Euclidean space? In a word, what is 
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the dimensionality of the random homological [SI complex of cells, interfaces, . . . , edges 
and vertices? 

D-dimensional froths have a few practical applications for D 2 4, and in non-Euclidean 
spaces for D 2 3. For the latter, one should note that the froth is the topological dual of 
a packing, of atoms for example, and that three-dimensional packings in positively curved 
3D space are very realistic models for amorphous metals [9, IO], quasicrystals [I I] and 
the crystalline alloy phases called tetrahedrally-closed-packed or Frank-Kasper phases [ 121. 
The only physical relevance of froths in more than three dimensions is in information theory 
[ 131. Notably, the most economical storage of data in a memory can be made by partitioning 
space into cells containing binary information. Efficient updating of this memory is made 
by cell division, and the problem is to find the best dimensionality D of the initial froth 
so that all cells affected by the updating are neighbours in the D-froth. Such updating is 
efficient and much more economical and organized than simply adding a dimension. Note 
that a different organization of the data and their updating has been suggested and studied by 
Nadal [14], based on the Hopfield spin-glass model of addressable and adjustable memory. 
There, updating is made by partition through hyperplanes of the whole structure, rather than 
by division of a single cell. 

In this paper, we call D-froth a space-filling random packing of cells which, in a space 
of dimensionality D, satisfies the Euler law [ 151 and the condition of structural stability 
(or maximal randomness). This condition is.the topological rule of a vertex figure with 
minimum coordination number (as discussed in section 2). 

In section 3, we show that the state of the D-dimensional froth can be characterized 
using a set of variables, the ‘valences’ Xk = ( n k - 1 . k )  with (k = ‘1,. . . , D) ,  which are 
the average number of the (k - 1)-dimensional elements surrounding a k-dimensional cell. 
These variables are not all independent and, in particular, we have found that the valences 
with k odd are related to the valences with k even. Furthermore, it is shown that valences 
with k even constitute a complete set of variables. 

The curvature of space is related to the statistical properties of the froth. In section 4 
this relation is discussed. We calculate explicitly, up to D = 5, the restricted range of 
independent valences for a Euclidean D-froth. 

Finally, in section 5, the possibility of constructing froths in any dimension is discussed 
and several examples are given. 

2. Construction rules for the froth in arbitrary dimension 

The cellular structure constituting the D-dimensional froth must satisfy the Euler law and 
rules of structural stability. 

The Euler law must be applied to the D-dimensional cellular system constituting the 
froth, which can be on an Euclidean, elliptic or hyperbolic manifold. The surface of a 
D-cell is a cellular structure constituting a ( D  - I)-dimensional froth in an elliptic space, 
which must also satisfy the Euler law. In the same way, scaling down the dimensions, one 
has lower-dimensional froths in elliptic spaces that satisfy the Euler law. 

The structural stability condition for the system states that the froth must have minimum 
coordination number for the vertex figures (minimum number of edges incident on a vertex, 
minimum number of faces incident on a edge, etc). Vertex figures with higher coordination 
numbers can be transformed into these by infinitesimal deformations. 

It is natural to characterize a D-dimensional froth in terms of the numbers Ci of the i- 
dimensional elements constituting the froth (CO number of vertices, CI number of edges, C? 
number of faces, C3 number of cells, etc) and by the average numbers ( n i , j )  of i-dimensional 
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simplices surrounding a j-dimensional one ((n0.1) = 2 number of vertices surrounding an 
edge, (nl,z) number of edges per faces, etc). 

o Euler formula: 

T Aste and N Rivier 

The D-dimensional froth is described by the following set of fundamental equations. 

D 

C(- l ) iC ;  = XD (4) 
i=O 

where XD is the Euler-Poincarb characteristic, which takes the value 1 for a connected 
Euclidean manifold. 
Euler formulae for the surface of the J-dimensional cells: 

(Elliptic) . with J = 1,2, . . . , D.  Here xJ-l 
sphere and has a value xF:'p"c) = 1 - (-1)'. 
Stability condition for the froth 

IS the Euler-Poincarb characteristic for a ( J  - 1) 

0 

with i 6 j 6 D. 

Note that (6) is the standard valence relation nj,; Cj = (n;,j)Cj in which nj.i is the 
number of j-simplices incident on any i-simplex. The stability condition for the froth 
implies that this number always takes its minimum value, i.e. n1.i = (Df!z:i). For example, 
n1,o = D + 1 is the minimum number of edges incident on a vertex in a D-dimensional 
space. 

Note also that (6) is a statistical relation and is only valid for i, j c D (on a surface of 
a closed j-dimensional simplex) or in the limit CO + co for j = D. Note also that (6) 
implies (ni,i) = 1. 

3. Definition of a complete set of independent variables 

The variables of the problem are the numbers of simplices Ci and the valences (nj.j) (with 
0 4 i c j 6 D).  The total number of these variables is D + 1 + $ D ( D  + 1). They are not 
all independent but are related by (4)-(6). 

The first step is to find an overcomplete set of variables that can generate all the other 
variables. The second step will be to find the number of degrees of freedom of the problem 
and a complete set of independent variables. 

The variables Cj are simply related to the valences by (6) 

D + l - i  
D - i  hi. D CD (7) 

where the total number of cells of the system CD can be taken as a extensive parameter of 
the problem, since we are interested in the statistical properties. 

The valences are also related between themselves; from (6) it follows that 

. (8) ( n t , j ) = (  D + l - i  . . )?=( D +  . 1 - i  , 
Ci Citi Cj-I 

J --I I - - 1  G + l  ci+2 cj 
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In particular, from (6) 
Ci h L . i + I )  -= 

C;+, D + 1 - i 
thus, substituting in (8) 

(n- .) - ( D  4- 1 - i)! 1 1 
"' - ( j  - i ) ! ( D +  1 - j ) !  (D+ 1 - i) ( Dt 1 - i  - 1) 

1385 

where we have defined Xk 
Thus, the variables ( X X ,  k = 1,2, . . . , J < D) form overcomplete sets for any subspaces 

of dimensionality J < D. 
These variables Xk are the average number of (k - 1)-dimensional simplices that form 

the boundaries of a k-dimensional simplex (XI  is the number of vertices per edge (always 
Z), X 2  is the number of edges per face, X3 is the number of facets per cell, etc). Note that 
these valences XK must be rational numbers and must satisfy X ,  2 k f 1 since a k-cell 
must be bounded by at least k + 1 neighbours (triangles and tetrahedra are the minimally 
bounded figures in two and three dimension, respectively). 

The variables Xk are not all independent. Substitution of (10) into (5) leads to a relation 
between these variables 

(nk-1 .k ) .  

that for  J odd gives a relation between X J  and the previous valences X k  with k c J 

For J = 1 to J = Z + 1 < D equation (1 1) gives 
x ,  = 2  ~~ 

" 

n 

2 
XU+]  = + x x ... X ,  - +, , , - & ' w (21)! 2 
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For J even, equation (10) does not give any new relation between the valences X x  (as 
proved in appendix A). 

The set of equations (12) indicates that all the odd variables X2,-, can be expressed in 
terms of the even ones. In (12) this expression is given up to J = 7. In appendix B this 
expression is obtained by induction for any J, and it is shown that all X21+1 can be written 
in the following canonical form: 

with 

Clearly XI ,  X3, Xs and X7 in (12) are canonical, and HA = 1, H I z  = 0 for all s. The 
coefficients a, in (14) are numbers, decreasing with increasing s, which are all larger than 
a, = fr' = 4.9348022, and converge rapidly to a,: 

84 
17 

a 0 = 6  a l = 5  ~az=-=4.94118 

3410 - 4.934877 
153 
31 691 

a3 = - = 4.935484 a4 = - - 

An additional relation between the valences should be considered when J = D .  In 
this case, one must take into account the Euler formula for the whole froth. Dividing 
equation (4) by CD, we obtain 

This relation is similar (but not, in general, equal) to (10) with J = D, and represents an 
additional condition on the valences. 

Note that in the thermodynamic limit (CD + CO), the right-hand side of (15) equals 
zero. In this limit, substituting (10) into (15) yields a relation between the valences X k  

where we used  no,^) = 1. 
This equation provides the following expression for X D  

For D even, equation (17) is a new relation between the previously free valences and 
X D .  For D odd, equation (17) is equivalent to (11) with J = D. This point is discussed in 
appendix A, where we calculate the number of degrees of freedom of the system. It turns 
out that, for D odd, equation (17) does not constrain the variables of the problem. 

In conclusion, the even valences X u  with 21 < D constitute a complete set of variables 
which determine the statistical topological properties of an Euclidean D-dimensional froth. 
For example, in D = 2, all variables are constrained, XZ = 6. In D = 3, we have one 
variable XI, as in D = 4. In D = 5 we have two variables XZ and X 4 ,  etc. 
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4. Space curvature and D-dimensional froths 

In a Euclidean D-dimensional space the froth is made up of D-dimensional simplices: the 
cells. The surface of such simplices is a (D - 1)-dimensional elliptic manifold covered by 
a froth. Scaling down the dimensions one obtains that the froth is constituted of elliptic 
lower-dimensional froths (the boundary of a J-dimensional froth is a ( J  - 1)-dimensional 
froth). 

As we have seen before, these froths are described by the even valences Xz, with 21 < D. 
By definition, all the valences X J  must be positive rational numbers and XJ 3 J + 1. 

When a valence XI goes to infinity it means that the J-dimensional cell is covered by 
an infinite number of ( J  - I)-dimensional simplices. This is a peculiar limit and it can be 
reached, for example, when the J-dimensional cell becomes infinitely large. The meaning 
of the limit X J  + 00 will be different for J odd and J even. 

Firstly consider the case of J odd, where, from the equation describing the J- 
dimensional froth in an elliptic space (equation (H)), the limit X J  + CO is reached when 
the denominator goes to zero, i.e. 

This relation between the valences XX defines a hypersurface in the space of the valences. 
Note that (18) is identical to (16), which was obtained for a ( J  - 1)-dimensional froth 
covering a Euclidean space. 

Now consider a froth on a (J - I)-dimensional connected  manifold^ where the Euler’s 
formula gives the following relation between the valences: 

Here xy-1) is the Euler-Poincari characteristic of the ( J  - I)-dimensional manifold. 
Note that the term in the brackets is the same as that in (18) and the sign of this term is 
the same as XU-!) (because CJ-1 

Different signs of the Euler-Poincd characteristic correspond to topologically different 
spaces. In particular, > 0 corresponds to an elliptic ( J  - 1)-dimensional space and 
x ( , - ~ )  c 0 correspond to an hyperbolic space, as long as J - 1 is even (in fact the 
Gauss-Bonnet theorem, of which Euler’s relation is the topological expression, holds only 
in even-dimensional spaces). 

Now, any two regions of the valences’ space which have different signs of the bracket 
term (i.e. of the x c J - , , )  correspond to two froths on manifolds of opposite Gaussian 
curvature. 

Thus the surface in the space of valences defined by (18) is the boundary between sets 
of manifolds (and froths) of opposite cuwature. The points on that surface are therefore 
froths in a Euclidean ( J  - 1)-dimensional space. 

Now consider the case of J even, where X J  is a free variable and so X J  -+ CO does not 
correspond to any restriction of the valences. The reason is that in odd dimensions ((J  - I )  
is odd) the sign of the right-hand side of (19) is not related to space curvature (there is no 
Gauss-Bonnet theorem in odd dimensions). 

Up to J = 5, from (19) it is straightforward to see explicitly the regions of valence 
space corresponding to different curvature. In particular, for J = 3 we have that the 
region with X2 c 6 corresponds to a positive Euler-Poincar6 characteristic and thus to 
a two-dimensional froth on an elliptic manifold. Conversely, XZ > 6 corresponds to the 

0). 
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7.5 

5 

j 
4D :euclidean , , 

I ;  

5. : 
~ 40 qiptic : 

; Existence of 50 froth 
~~ ~~ 

. .  ._ . -. -. _ '  

-. -. -. - . -. 4 

: Existence of 30 froth: 

r i z 

hyperbolic region and finally X z  = 6 is the Euclidean region (see figure 1). For J = 5 we 
obtain that the curve in the space of the valences Xq = 5(6 - X 2 ) / ( 5  - X z )  corresponds to 
a four-dimensional froth on a Euclidean manifold, the space below this curve corresponds 
to the elliptic region and above there is the hyperbolic region (see figure 1). 

A J-dimensional froth can only be generated if all the lower-dimensional froths 
constituting the J-froth are on elliptic manifolds. This yields some restriction on the range 
of variability of the valences X,. In particular, all the lower-dimensional valences must be 
in the range J + 1 6 X J  < W. When J is odd this condition associated with (1 1) gives 
new restriction on the range of variability of the previous even valences. 

For J = D even, another restriction on the last valence X o  comes from (17), i.e. from 
the condition that the D-froth is on an Euclidean manifold. 

Up to D = 5 the restrictions on the valences are: 

D = 1: X I  = 2, from (1 1). This is always valid (any edge is surrounded by two vertices). 
D = 2 X I  = 2 from (1 I)  and X z  = 6 from (17). This is the well known condition that a 

two-dimensional Euclidean froth has hexagonal cells on average. 
12 . .  D =3:  X I  = 2  and X3 = -. 

Furthermore, 4 < X3 < CO for the three-dimensional froth to exist, thus 3 < X z  < 6, 
restricting the free valence X2.  

The four-dimensional froth is Euclidean if X4 = 5% (equation (17)). It only exists if 
5 < X4 < CO, thus 3 < X Z  < 5. The upper bound for X Z  is reduced further in D = 4 
from its value in D = 3. For example, the polytopes (3,3,3,3) and (4,3,3,3) are 
elliptic regular 'froths', with XZ = 3, X4 = 5 and XZ = 4, X4 = 8 ,  respectively, while 
(5,3,3,3) is a hyperbolic regular 'froth' with XZ = 5 and X4 = 120. 

D = 4 :  X I  =2and  x3 = &. 
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D = 5: X I  = 2 ,  X3 =~-, I2 X s  = 2/[1 - $X4=]. 
6 < X5 e 00 yields < X4 < 5%. (the region between full and chain lines in 
figure 1). 
Furthermore, 5 < X 4  < CO yields 3 < X Z  e 5. This necessary condition implies that 
IS, 3,3,3;3) is not a froth, hence that (5,3,3,3) is hyperbolic (which is kndwn from 
[W. 
The region of existence of the fie-dimensional froth is contained in (and is smaller 

than) the region in which the four-dimensional froth is elliptic. Thus the condition of elliptic 
lower-dimensional froth is a necessary condition for constructing higher-dimensional froths, 
but it is not sufficient. 

5. Classes of froths in all dimensions 

The representation in the valences space of a froth of dimensionality J is a succession 
of free valences { X Z ~ )  with 21 < J. The J-dimensional froth can be, in general. elliptic, 
Euclidean or hyperbolic. However, for the froth to be constructible in any dimension, it 
must be elliptic in all dimensions until J + CO. This implies that the sequence (X,) must 
satisfy the conditions J + 1 < X I  < CO for any J until J --z CO. If, for some finite 3 ,  X J  
gives a hyperbolic or Euclidean froth. X J + ~  would be infinite. 

There are two interesting sequences that satisfy these two conditions and (ll),  in any 
dimension: 

(Or)  x k  = k +  1 (20) 

and 

@) X k  = 2 k .  (21) 

These expressions are valid both for k even or odd. If k is even, these are the values 
of the free valences; when k is odd, they are the solutions of (1 1) for J = k ,  as shown in 
appendix C. 

If one imposes the Euclidean condition (equation (17)) on the even valences for J = D, 
the sequence is interrupted and one gets 

and for X k  = 2k, 

follows from (17) and (21) (see appendix D for the explicit calculation). These values are 
different from (20) and (21), and approach them only when D + CO. 

51. Regular froths 

A possible way to construct froths in any dimension is to make them with regular polytopes.. 
By definition, a froth must be make from polytopes with minimum vertex figures (all 

vertex figures must be topologically stable). In the Schlafli notation [15] these froths belong 
to the family (XZ, 3'-']. 
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A regular 6-dimensional polytope of this family is a froth on a (8 - I)-dimensional 
elliptic manifold (the boundary of the polytope). A Euclidean froth is called honeycomb. 
after Schlafli. 

In any dimension greater than 2, all the possible polytopes and honeycombs of the 
family (Xz, 36-2) are limited in number. 

For 8 = 2 one has an infinite number of possible polytopes (Xz] and only one possible 
honeycomb I6,3). 
For 6 = 3 one has three possible polytopes: (3,3), (4,3) and (5,3} but no possible 
honeycomb. 
For 6 = 4 one has three polytopes: {3,3,3}, [4,3,3) and (5,3,3} and no possible 
honeycomb. 
For 6 2 5 one has two possible polytopes: (3&-'}, (4, 36-z) and no possible honeycomb. 

Note that (3*-'} has X r  = k + 1 and (4,3'-*} has X, = 2k. These two regular froths 
are the ordered variants of (i) equation (20) and (ii) equation (21). 

Hyperbolic polytopes never occur in natural froths, except in the cubic and sponge 
phases of amphiphiles [17]. 

5.2. Statistical regularfroihs 

Consider the vertex figure of a D-dimensional regular froth. The number of edges incident 
on the vertex must be D + 1. 

Let us assign at every edge a unit vector ei directed along the edge and pointing out of 
the vertex. 

In a regular froth the vertex figure must be regular and then all the unit vectors e; must 
be separated by the same angle. These two conditions correspond to 

and 
if i = j  

C O S C U ~ , ~  =casu  if i # j .  I '  eiej = 

From these equations it follows that 
D+1 

i . j=l 
eiej = D + I + [ (D  + I)* - (D + I)] coscl = o 

thus, 
I 

D 
COSE = -- . 

The average number of edges of the two-dimensional facets is 

- 2 H  xz = - 
H - cos-l (-+J 

6 for D = 2 
5.104 for D = 3  
4.77 for D = 4 

. .  
4 for D + CO. 
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X Z  = 6 in the two-dimensional Euclidean froth is a well known result. In D = 3, the 
value X 2  = 5.104 is the same as that obtained by the maximum packing of equal spheres 
[I, 161. 

Finally note that the value X 2  = 4, obtained in the limit D --f CO, is the same as that 
for the B-froth (XI = 2k)  and for the polytope (4,3,3. . . .]. 

6. Conclusions 

A D-froth is a graded topological set constituted by D-dimensional polytopes which 
randomly fill space. The interfaces of these cells are ( D  - I)-elliptic froths, constituted 
by (D - 1)-polytopes. Each element of the interface is itself a ( D  - 2)-froth etc. The 
graded topological set has c k  k-dimensional polytopes separated by Xk interfaces each (on 
average), which are (k  - 1)-froths in elliptic space. 

A natural characterization of such a system can be given in terms of the number of k -  
dimensional simplices and of mean adjacencies numbers {ni,j) (with i < j ) .  For example, 
in D = 2 these variables are the number of cells, edges, vertices, and the mean number of 
edges per cell and of vertices per cell and of vertices per edges. In a D-froth these variables 
are not all independent. 

We have shown that a complete topological characterization of a D-froth can be achieved 
by a set of independent variables: the even 'valences' X Z ~  with 2k = 2, . . . , 2  j < D .  These 
valences are the average number of the (2k - I)-dimensional elements that constitute the 
interface of a 2k-dimensional cell. Odd valences are given in terms of the free even valences. 
We found a canonical form for these relations in spaces of any dimension. The coefficients 
a,, of these relations have been calculated up to a5 (corresponding to explicit expressions for 
the odd valences up to  XI^).^ We have found that these coefficients are rapidly converging 

1 2  to a, = 7" . 
A D-froth can be in a Euclidean, hyperbolic or elliptic space, but all its elements are 

lower-dimensional k-froths in elliptic spaces. It has been shown that the curvature of space 
influences the range of variability of the free even valences. As the dimension of the froth 
increases, this range is more restricted. 

Two classes of froths (defined by the sequences Xk = k + 1 and XX = 2k)  have been 
found which satisfy all the topological conditions in any dimension. These two classes 
of disordered froths (valences are averages) correspond to the only two possible regular 
polytopes in spaces of dimension higher than 4. The existence.of these two froths in any 
dimension, the analogy with regular polytopes and the direct calculation of the range of 
variability for the valences for D < 5, suggest that the sequences XX = k + 1 and Xk = 2k 
give the limiting values for the range of the free valences in froths of arbitrary dimension. 

In summary, these are the main results of this paper: 

(i) A topological froth fills space with cells. A D-dimensional froth is a graded set of 
elliptic topological froths in lower dimensions. 

(ii) The incidence numbers are binary coefficients fixed by randomness. The coordination 
numbers are random variables. 

(iii) A topological froth in D-dimensions can be reduced to a problem of linear algebra. 
There are [ D / 2 ]  independent variables. X 2 k  = (n2~- -1 .2~ ) ,  the average number of 
neighbours of the even-dimensional cells in the froth ([XI is the integer part of x ) .  

(iv) In Schliifli notation, topological froths &e {X2, 3,3, .  . . ,3}  for any space curvature, 
where 3 < X 2  < L(D) .  The upper limit is realized L(3)  = 6, L(5) = 5 and it is 
conjectured that L ( D  = 00) = 4. 

+ 
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(v) All average coordination numbers have been given in terms of the independent variables 

T Aste and N Rivier 

X u  by explicit or recursive relations. 

(3 -2 0 0 0 ... 0 0 0 

G) - (3 0 0 0 ... 0 0 0 

(;) -(;-I) (y) -2 0 ... 0 0 0 

(L) -(;I:) (:I:) - (!<) . . . . . . (7) -7. 0 

(t) -(;I;) (;I:) -(;I:) ... .. . 1 -1 0 

(8 -(;-I) (y) - (f-3) 0 .. . 0 0 0 
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Appendix A. Homological dimension of the froth and number of degrees of freedom 

In order to prove the completeness of the set of variables ( X 2 ,  X q ,  . . . , X21, . . .) it is better 
to start with relations (4)-(6) and define a new set of variables. 

From equation (6), one obtains 

. (A3) 

with i < j < S < D. Thus, the set of variables (ni.8) with i = 1,2,  . . . ,S is overcomplete. 
The relationships between these variables is a system of linear equations, and the number 

of degrees of freedom can be calculated easily. 
Substituting equation (AI) in (5) yields a sy&m of S linear homogeneous equations in 

S + 1 variables: 

I i  
I I 1  -1 1 -1 ... 1 -1 0 

(6 - 2) -(S- 3) (6 -4) -(S -5) ... 0 0 0 
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Moreover, this S x (6 + I )  triangular matrix has 6/2 zeros on the diagonal. Its rank is 
r = 6 - S/2 = 812. 

For 6 odd, the matrix of~coefficents of the system (A2) has exactly the same form as 
(A3) except for the last row. As before, one has the following triangular matrix: 

0 0 0 0 ... 0 0 0 
@) -(3 0 0 ... 0 ’ 0 0 

. (A5) 

(6 - 1) -(S -2)  (6 -3) -(6 -4) ... -2 0 0 
1 - 1  1 -1  ... -1 1 -2 

In this case we have a 6 x (6+1) triangular matrix with (S - 1)/2 zeros on the diagonal. 

Thus, in any subspace of dimension S < D ,  one has S + 1 variables related by 612 or 

The number of degrees of freedom is therefore 

The rank is: r = (8 + I )  - (S - 1)/2 = (6 + l)/2. 

(8 + 1)/2 independent equations for 8 even or odd, respectively. 

f = 6 + 1 - 6 - 1 = S  2 2 for 6 even 

f = a +  I - y - 1 =k! 2 for 6 odd I 
where the term ‘-1’ comes from the constraint (ns.8) = 1. As for the overcomplete set of 
variables introduced before, the even valences Xz! with 2 < 21 < S < D are independent 
because the number of these variables is equal to the number of the degrees of freedom. 

When 6 = D ,  one has also the Euler formula for the froth in a Euclidean D-dimensional 
space (15), which becomes linear and homogeneous if CD + CO. This equation is a new 
relation that must be added to the system of linear equations (A2). For D even, from (15) 
and (A4), one can write this system of D+ 1 variables and D+ 1 equations as the following 
( D  + 1) x ( D  + 1) matrix of coeflicents 

0 0 0 ... 0 0 0 I (2”) -(?-I) 0 ... 0 0 0 

( 0 - 2 )  - fD-3)  (0 -4 ) ’  ... 0 0 0 
1 -I 1 ... 1 - 1  0 

1 ’  - I . - I _ _  ! I  
D+1 D D-] ”‘ 3 2  

-_ I - 
The last row has the coefficents of Euler’s,relation. The rank of this matrix is r = 
D + 1 - g = $ + 1. Therefore, for D even, the Euler formula is an additional relation that 
increases the rank of the matrix by 1. 

For D odd, one obtains from (A5) and (15) 
0 0 0 ... 0 0 0 

(2”) -(?-I) 0 ... 0 0 0 

(D-1)  - ( D - 2 )  (0-3) ... -2 0 0 
1 - 1  1 ... - I  1 -2 

. - 1 -- 1 1  I - I -- I 
D+ I D D-I 1 . ’  3 2 
-~ 
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In this case, the rank of the matrix is r = D + 1 - F = F and it has not been 
increased by adding the Euler formula. 

Thus, for D even the Euler formula is a new relation between the valences 
(equation (17)) that decreases the degrees of freedom by one, i.e. f - 1. For D odd 
the number of degrees of freedom is not modified by the Euler formula, which does not 
represent a new condition on the variables, so that (17) is equivalent to (11) for J = D 
odd. 

Appendix E. Expression for the dependent valences Xte+t in terms of the 
independent valences Xz8 

We want to show, by induction, that Xu+] has the canonical form: 

where the are also expressed by induction as 

The induction on Him terminates when the subscript 2m = 0 (Hi = 1, H:z = 0 
for all s). Thus, expression (B2) involves only a finite number of induction steps. The 
coefficients a,r are numbers, independent of the order (21 + 1) of the original valence. For 
example (see equation (12)) 

84 
17 

a0 = 6 

a3 = - = 4.935 484 

ai = 5 ~ a2 = - = 4.94118 

(B3) 
153 3410 
31 69 1 

a4 = - = 4.934877 

as=-- 26949 -4.9348105 a,= 4z2 =4.9348022. 
5461 

A general expression (B16) for the u , ~  will be given below, together with their asymptotic 
value. Clearly, f o r s  > 4, all the a, have values very close to their lower bound a, = fz'. 

The expressions for X I ,  X3, X5 and X7, given in the text (see equation (12)) have the 
canonical form (BI) and (B2) with the coefficients a,, = 6, al = 5, a2 = $ given in (B3). 
Moreover, 

depend only on the coefficients a,. After this point, the induction mechanism is set. 
Assuming that all X*j+l have the canonical form (Bl) for all 0 < j < 1 - 1 (that is, 
assuming also the validity of (B2) for the H&, 0 < m < 1 - 2), we now show that (Bl) 
and (B2) are valid for j = 1 and m = 1 - 1, respectively. In the process of induction, we 
will obtain a general expression for the coefficients a, and show that they are independent 
of the earlier coefficients. 

From ( 1  I ) ,  we have 
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a function of both dependent ( X * j + l )  and independent ( X z j )  valences. Let, by induction, 
all dependent variable X2j+] take the canonical form ( B l )  for 0 < j < 1 - 1 ,  

Then, using (BZ), we have 

XU+]  has the canonical form if 
XZI-2 2 

HZ(1-2) N o = l -  _. 

a1 
Thus a0 = 6. and because X21-3 has by hypothesis the same denominator as IY&-~), 

with 

XZI-4 3 
7 1 - -  H2(l-3) a2 

to be canonical. Thus, a1 = 5 and H&-3), H2(l-s, I and X21-5 have the same denominator: 
1 - (X21-6/a,3)H&l-4,. By induction hypothesis, we have 

with 

This yields immediately a2 = E.  The process continues till NI-] ,  i.e. until the subscript of 
H211-(1-1)-21 is equal to -2. . 
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Clearly, the general term is 

(2 + 1) x ( 2 k + 2 )  
"(1 - 

in the canonical form. This implies that Nk+] has the same form 

which demonstrates (BI) by induction. 
By the same method, we obtain the series of equations for the coefficients a,, 

(I - (2k + 1) x (2 + 2) 
2a1 

(2k - 1) x 2k 
(B16) 

When k is large, the correction to 1 become negligible after some stage, aa becomes 
This yields the sequence given in (B3). 

independent of k and satisfies the equation 

that is 
cos&= -1 

so that 

(B 17) 
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Note that (B17), truncated at an even power in the series, has no solutions, whereas if 
it is truncated at an odd order, its solution is < n2/2. However, the exact equation (B16) 
always has a solution ak > x2/2.  

Appendix C. Sequences of froths in arbitrary dimensions 

Imposing (20) in (1 l), one obtains 

Indeed, 

j XJ = J + 1. 0 2-(5+1)  
(1 - I)”+’ + 1 = -- 

~ J + l  J + 1  

Imposing (21) in (ll), one obtains 

= 2J 
2 

(ii) XJ = J - 2 N  J 1 
1 + L o  (J-i)!  rIkZi+l2k 

Indeed, 

1-225 j X ~ = 2 5  1 = -(-1+2)’+ - 
2J 25 

Appendix D. Euclidean termination of the froth sequences 

The Euclidean condition (equation (17)) on the even valence X D  yields 

Indeed, if we put formaly J = D + 1 in the identity (Cl), we,obtain 
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follows from (17) and (21). 
As above, 

D(D ' )  + (-1)D2(D + I) + (-l)D+' 
I - 

4D(D + 1) 2 
D 

2(D + 1 )  
- - = + X ~ = 2 ( 0 + 1 )  
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